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Rough outline

• About Lattice QCD and the Software Stack

• Porting QUDA
– QUDA portability working group
– the search for CUDA-idioms using HIPIFY
– some refactorings

• Abstracting Kernel launches & tuning
• Easy abstractions:  RNG & FFT
• Trickier: Streams & Events 

– Some noteworthy issues... 

• Where we stand today? 

• Where to we go next?
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Lattice QCD & Lattice QCD Codes

• Lattice QCD (LQCD) is the only known, non-
perturbative, model-independent, method to 
carry out calculations in the strong coupling 
regime of QCD – the theory of the strong 
nuclear force.

• LQCD calculations are important to the 
missions of the DOE SC NP and HEP offices

• Several QCD codes out there: Chroma, CPS, 
MILC, GRID, BQCD, OpenQCD, etc.

• Key computational motifs:
– Hybrid Molecular Dynamics Monte Carlo 
– Sparse linear solves on a regular grid (nearest/next 

to nearest neighbor stencil operators) 
– Tensor contractions (via batched ZGEMMs) for 

analysis

Flux tubes between 3 quarks. Produced by and 
courtesy of Dr Derek Leinweber, Centre for the 
Subatomic Structure of Matter (CSSM) and 
Department of Physics, University of Adelaide, 
5005 Australia Copyright © 2003, 2004. 

Simple quark line diagrams. Lines are ‘valence 
quark propagators’ Contractions with Dirac 
matrices, giving spin-parity to the state, occur at 
the yellow vertices
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The typical LQCD workflow
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LQCD Software in the US

• Layered approach based on design developed in 
SciDAC1-4

• Applications make use of libraries 
– Optimized Solvers/Dirac Operators

• QUDA, MGProto, BFM, etc..
– Data Parallel Productivity Layer (QDP++)
– Parallel I/O and Communications wrapping Layer (QMP/QIO)

• QUDA Library for GPUs is a critical component 
– provides state of the art solvers for LQCD originally on NVIDIA 

GPUs. Porting to AMD GPUs is the focus of this talk.
– lead developer Kate Clark and her team are Dev-Tech-s at 

NVIDIA

• On GPUs accelerated solvers are not enough! Even 
small amount of serial code can cause Amdahl’s law 
bottleneck.

– QDP-JIT is a version of QDP++ productivity layer for GPUs
– Uses JIT Compilation through the LLVM framework to 

generate PTX code for NVIDIA GPUs and now also AMDGCN 
ISA for ROCm

The USQCD software layers

The “Money Plot”: Performance gains from Titan o Summit, 
incorporating Multigrid and force Gradient Integrators into 

the gauge generation
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Porting Strategy: QUDA + QDP-JIT

• The plan was to port QUDA and QDP-JIT for Frontier
– Chroma is 99% written in terms of QDP++/QDP-JIT constructs calling out to QUDA for solvers.
– QUDA ports to new exascale architectures also benefit the MILC and CPS codes.

• QUDA developers and vendors formed a Portability working group
– QUDA development team from NVIDIA, developers from ORNL, ANL, LLNL, FNAL and COE 

staff from the Frontier COE from AMD, and the Aurora COE from Intel
– NVIDIA’s interest: refactor for use with std. C++ features/NVHPC

• move towards using pSTL to express parallelism
• clean up code, apply modern C++ idioms
• Working group lead: K. Clark

– OLCF/LLNL and AMD interest: Frontier, El Capitan and HIP/ROCm
• B. Joo (OLCF), D. Howarth (LLNL),  D. McDougall (AMD), C. Robeck (AMD)

– Argonne and Intel Interests: Aurora,  SYCL/DPC++ and OpenMP-offload
• J. Osborn (ALCF), X-Y Jin (ALCF), A. Strelchenko (FNAL), P. Steinbrecher (Intel)

– WG rules: no NDA, no dissing other companies or their products!

• The QDP-JIT work was undertaken by Frank Winter (QDP-JIT lead)
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Initial Discovery using hipexamine-perl.sh

• Ran hipexamine-perl.sh over the source 
– false positives: QUDA routines starting with ”cuda” 
– Majority of true cuda-refs

• kernel launch
• Memory (alloc, H2D-D2H tranfers, async, shared memory, P2P)
• Streams
• Events
• Dependent external libs (CUB, cuFFT, cuRAND)
• warp-shuffle operations (exist in hip but name incompatible)
• scattered __CUDA_ARCH__ and other CUDA specific #ifdefs

– some funnies: 
– no host sincos() with hipcc (GNU extensions), device OK
– no host rsqrt() with hipcc,  device OK

• We submitted 2 Pull Requests on GitHub to HIPIFY 
– better whitelisting/blacklisting (e.g. excluding directories)
– some more known false positives
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Major Restructurings
• QUDA API

– qudaMemcpy(), qudaLaunchKernel(), etc...

• Kernel Launch Abstraction
– Kernel1D, Kernel2D, Kernel3D, Reduction, BlockReduction, 

TransformReduce
– These ’launchers’ are templated on their ’dispatcher functors’ and their 

arguments (similar in style to Kokkos)
– All derive from ‘Tunable’ class to autotune block and grid dimensions

• Device Independent Streams
– pre-create all 8-9 streams used. Pass around index of stream

• Device Independent Events: 
– using qudaEvent_t = void* ;
– manipulate with qudaEvent() functions in the QUDA API
– cast to  cudaEvent_t / hipEvent_t etc only in the back end API 

definitions

• Modern C++ techniques – mostly compile time
– constexpr functions to remove/reduce macro use

• e.g. fixed device properties, like warp size, minimum block size etc.
– SFINAE  ( std::enable_if<>)  to select various features

• e.g. to pass arguments via regular function arguments or shared memory.

CppCon17 talk by Ben Deane and Jason Turnerx

template <template <typename> class Functor, 
typename Arg, 
bool grid_stride = false>

__forceinline__ __device__ 
void Kernel1D_impl(const Arg &arg)
{

Functor<Arg> f(arg); // instantiate

// Compute 1D Thread Index
auto i = threadIdx.x

+ blockIdx.x * blockDim.x;

// Potentially grid strided execution
while (i < arg.threads.x) {

f(i);  // Execute!

// Deal with grid stride
if (grid_stride) 

i += gridDim.x * blockDim.x; 
else 

break;
}

}

1D Kernel in QUDA

https://www.youtube.com/watch?v=PJwd4JLYJJY
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But its not all roses... (it’s tulips) – Bumps along the way
• There have been some rough edges with the compilers since ROCm-3.4

– missing functions (e.g. related to IPC/P2P) – now all added
– often could work around issues by building our own ‘upstream’ compiler

• from upstream LLVM or from AMD  amd-stg-open branch on their GitHub
– the occasional mysterious segfault

• fixed by putting limits on shared memory region size.
– the occasional weird mis-compilation

• the curious case of the non-terminating loop – ticket filed but really hard to repro.
– the 4 hours it took to compile one file (now reduced with compiler flags)

• full build (double, single, half precisions, 8/12/18 compression + Multigrid) now about 40 min
– ...

• As of  ROCm-4.2 all our issues are resolved, worked around and potentially  
have tickets with AMD

• All new systems have rough edges. We go through it, so you don’t have to 
suffer (excessively)! 

https://github.com/llvm
https://github.com/ROCm-Developer-Tools/amd-llvm-project
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Some Preliminary Numbers from Spock

• Performances as reported by QUDA, using HIP events for timing
– not yet gone back for a ROCprof based check on bandwidth
– those of you who have seen my talk this morning may recall event based timing, rocprof timestamps, and roctrace, all adding 

different overheads.

• HIP DP results decrease dramatically for gauge field compression 
– needs root cause (higher register pressure? spills? device trig functions not being used?)
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Status Summary and Next Steps

• The Chroma stack now builds on AMD systems using QUDA and 
QDP-JIT
– also many build improvements: autoconf->CMake for USQCD stack
– Spack packaging also in development (I need to learn about Spack + 

ROCm)

• Future steps: 
– multi-device/multi-node testing and profiling (we have just begun this)
– root-cause performance issues and fix
– run our ECP FOMs

• Overall experience 
– We have come a long way in terms of capabilities and stability and will have 

Chroma ready for Frontier.
– The staff at HPE, AMD and locally at OLCF are super capable and helpful: if 

you have issues please get in touch with us at help AT olcf.ornl.gov
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